Copyright © by Holt, Rinehart and Winston. All rights reserved.

SECTION 7-1 REVIEW

GLYCOLYSIS AND FERMENTATION

VOCABUL	ARY REVIEW Def	ine the following te	erms.	
1. cellular	respirationBloL	DOGICAL PATHWAY	THAT BREAKS DOWN SUGAR	
TO F	ORM ATP		and the second of the second o	
2. glycolys	sis BREAKS bown	o Glucose to form	M ATP AND PYRUVATE (TO BE USE	D
IN K	CREBS CYCLE)		Б	
3. lactic ac	cid fermentationCc	NVERSION OF PY	RUVATE TO LACTIC ACID (ALLOWS	
CONT	THURTION OF GL	Y COLYSIS THROUGH	NAD+ PRODUCTION)	
4. alcoholi	ic fermentation	SUBRSION OF PYR	WINTE TO 2 CARBON COMPOUND	-
THROUG	SH DELEASE SO OF	CO THEN CON	NERSION OF 2 CARISON COMPOUND	TC
ETHYL MULTIPLE	CHOICE Write th	e correct letter in the	IF GLYCOLYSIS THROUGH PRODUCTION OF NA he blank.	D
1. (Glycolysis takes plac	ee		
	a.) in the cytosol.b. in the mitochond	ria.	c. only if oxygen is present.d. only if oxygen is absent.	
2. 1	During glycolysis, glu	ucose is		
	a. produced from tw pyruvic acid.b. converted into tw of ATP.		c. partially broken down and some of its stored energy is released.d. partially broken down and its stored energy is increased.	
3. 1	Both lactic acid ferm	entation and alcoholic	c fermentation produce	
	a. a two-carbon molectionb. CO₂ from a three-	ule.	c. ATP from ADP and phosphate. d. NAD ⁺ from NADH and H ⁺ .	
4.	The efficiency of gly	colysis is approximate	ely	
	a. 0.2%.	b. 2%.	c. 20%. d. 200%.	
5.	The anaerobic pathw	vays provide enough e	energy to meet all of the energy needs of	
	a. all organisms.b. all unicellular and	l most multi-	c. many unicellular and some multi- cellular organisms.	

cellular organisms.

d. no organisms.

SHORT ANSWER Answer the questions in the space provided.

- 1. Why are the fermentation pathways referred to as "anaerobic" pathways? THEY HAPPEN IN THE ABSOLUTE OF CO
- 2. What are the energy-containing products of glycolysis? NNDH, NTP
- 3. Of what importance are lactic acid fermentation and alcoholic fermentation to the cells that use these pathways? THEY ALLOW GLYCOLYSIS TO CONTINUE WITH THE REGENERATION OF NAD+
- 4. Critical Thinking The vitamin niacines an essential component of NAD⁺. Niacin can be consumed in food or manufactured in the body from tryptophan, an amino acid. How would a person's ability to break down glucose through glycolysis be affected if the person's diet were deficient in both

niacin and tryptophan? Explain your answer. THIS WOULD DECREATE THE ABUNDANCE OF

NAD+, HINDERING GLYCOLYSIS; NAD+ IS REQUIRED FOR GLYCOLYSIS

STRUCTURES AND FUNCTIONS The diagram below depicts the stages of fermentation. Complete the diagram by writing the names of the pathways in the ovals and the names of the molecules in the boxes.

SECTION 7-2 REVIEW

AEROBIC RESPIRATION

vo	CABULARY REVIEW Define the following terms.
1.	aerobic respiration BIOLOGICAL PATHWAY PRODUCING ATP IN THE PRESENCE OF
	OFYGEN
2.	mitochondrial matrix SPACE INSIDE THE INNER MITOCHONDRIAL MEMBRANE - ALSO
	THE SITE OF THE KREBS CYCLE
3.	Krebs cycle PATHWAY BREALING DOWN ACETYL COA TO PRODUCE CO2, HYDROGEN ATOMS (CARRIED BY NADH and FADH,) AND ATP
4.	FAD CARRIER HOLECULE FROM KREBS TO ELECTRON TRANSFORT CHAIN (ETC)
MU	LTIPLE CHOICE Write the correct letter in the blank.
	 The breakdown product of glucose that diffuses into the mitochondrial matrix for further breakdown is
	a. acetyl CoA. b. pyruvic acid. c. oxaloacetic acid. d. citric acid.
	2. The starting substance of the Krebs cycle, which is regenerated at the end of the cycle, is
	a. acetyl CoA. b. pyruvic acid. c. oxaloacetic acid. d. citric acid.
	_ 3. The Krebs cycle
	 a. produces two molecules of CO₂. b. produces a six-carbon molecule from d. generates most of the ATP produced
	4. The electron transport chain of aerobic respiration
	 4. The electron transport chain of aerobic respiration a. generates O₂ from H₂O. b. produces NADH by chemiosmosis. c. pumps electrons into the mitochondrial matrix. d. pumps protons into the space between the inner and outer mitochondrial membranes.
	The maximum efficiency of aerobic respiration is approximately

Copyright © by Holt, Rinehart and Winston. All rights reserved.

a. 0.39%.

(c.) 39%.

d. 390%.

SHORT ANSWER Answer the questions in the space provided.

1. In the Krebs cycle, what molecule acquires most of the energy that is released by the oxidation of acetyl CoA, and how many of these molecules are produced during each turn of the

NADH - 3 per turn ... 6 per molecule of glocose

2. Which reactions of aerobic respiration occur in the inner mitochondrial membrane?

3. Write the equation for the complete oxidation of glucose in aerobic respiration.

C6H12O6 + 602 -> 6002 + 6H2O + ATP

4. Critical Thinking How is the structure of a mitochondrion well adapted for the activities it

carries out? Highly folded incer membrane (crystae) maximizes surface area.

More surface area means more space for E.T.C. which means more ATP.

STRUCTURES AND FUNCTIONS Use the diagram to answer the following questions.

The diagram below summarizes the electron transport chain and chemiosmosis in aerobic respiration. Label the substances that are transported along the arrows labeled *a-d* in the spaces provided. Label the reactants or products that are represented by e-g in the spaces provided.

Inner mitochondrial membrane

MITOCHONDRIAL MATRIX

* Side note:

07 + e- + H+ + H20