Cell Transport Notes

- Diffusion and Osmosis
- Active Transport

M

Cell Membrane

- All cells are surrounded by a thin, flexible barrier known as the cell membrane.
 - □ The Cell Membrane has two major functions.
 - forms a boundary between inside and outside of the cell (provides protection and support)
 - regulates passage of materials into and out of the cell.

1

Components of the Cell Membrane

Now...lets take a closer look at cell membrane!

Lipid Bilayers (2 layers of phospholipids)

- Phospholipids arrange themselves in lipid bilayers to make the cell membrane!
- The lipid bilayer gives the cell membranes a flexible structure that forms a barrier between the cell and its surroundings.

Phospholipids

Phospholipids are the major component of cell membranes

Hydrophilic

- likes water
- polar

Hydrophobic

- dislikes water
- non-polar

Within the Layer

- Many different parts:
 - Sterols Animal Cells that is the Cholesterol
 - □ Proteins
 - Markers
 - Receptors
 - Transporters
 - Enzymes
 - Anchoring

- Movement!
- Chloesterol/Sterols Purpose:
 - □ Keep the membrane firm and prevent freezing

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Proteins

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

- Purpose: Identifies the cell type
- How: Has a carbohydrate attached to the outside
- Can be called glycoprotein

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

- Purpose: Recognizes and binds to substances outside of the cell and sends a signal to the cell
 - ☐ Hormones

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

w

Transport Proteins

- Passive Diffusion:
 - □ Channel Proteins
 - Purpose: Create a hole to allow larger molecules to pass through the membrane
- Active Transport:
 - □ Protein Pumps
 - Purpose: Uses energy to move molecules against the concentration gradient

Transport Proteins

Active Transport

Enzymes

Purpose: Assists in chemical reactions inside of the cell

Anchoring

- Purpose: Hold the cells together
 - □ Intercellular Junctions #ftw

м

Main Function of the Cell Membrane

- Remember...one main function of the cell membrane is to regulate materials that enter and exist the cell.
- Do you think that the cell membrane lets all things in or out?
 - No... the cell membrane is considered Selectively Permeable!

Cell Transport: Diffusion and Osmosis

M

Cell Transport

- Review Vocab
 - Solute: Particle that is dissolved (Koolaid Sugar)
 - □ Solvent: Liquid that does the dissolving (Water)

New VOCAB

- □ Permeable: Allows particles to pass through
- Impermeable: Does NOT allow particles to pass through
- Semipermeable: Allows certain particles to pass through *******

Selectively Permeable:

□ Allows some molecules to cross the membrane, while others cannot.

In the picture, which molecules are let across the membrane? Which are not?

- Let across Blue Molecules
- Not allowed across Orange Molecules

М.

Why must the membrane be selective?

- To maintain HOMEOSTASIS:
 - Organisms ability to maintain stability and adjust to environmental changes
- To let in only necessary molecules such as:
 - water molecules
 - food particles
 - □ ions
- To remove wastes such as:
 - ☐ Worn-out organelles
 - □ CO2
 - excess water
 - Undigested food

DEMO! Dialysis Tubing

Set Up: What do you think will happen?

What happened? Why?

Draw it and Describe this in your own words!

What is Diffusion?

Diffusion:

- Movement of particles from higher concentration to lower concentration.
- When the concentration of the particles is the same throughout a system, the system has reached equilibrium.
- □ Diffusion does **not** require the cell to use energy!

DIFFUSION

DIFFUSION

Diffusion Through Cell Boundaries

Factors that affect Diffusion

Heat:

□ The hotter the solution, the quicker it will diffuse

Size of Particles

□ Particles that are too large may not be able to diffuse because they can't get through the semi permeable membrane

Concentration of Particles

□ The larger the difference, the faster the diffusion will happen

Osmosis...a special type of Diffusion!

- Osmosis:
 - Osmosis is the diffusion of water through a selectively permeable membrane.
- In a cell, water always tries to reach an equal concentration on both sides of the membrane!

What happens if there is too little water?

- The cytoplasm shrinks!
 - PLASMOLYSIS

Osmosis

ĸ.

Three Types of Solutions

- A cell can be in three types of solutions:
 - □ Isotonic (same strength")
 - ☐ Hypertonic ("above strength")
 - ☐ Hypotonic ("below strength")

□ Let's examine each a little closer!

Isotonic Solutions

- Concentration of dissolved substances in solution is the same as concentration of dissolved substances inside the cell. (same strength).
- Water inside the cell is equal to water in solution.
- Cells in isotonic solution do not experience osmosis and retain their normal shape.
- EX:
 - Immunizations are isotonic solutions so they do not damage the cells by gain or loss of water.

Isotonic

Solution is Isotonic

м

Hypertonic Solutions (Hyper kids)

- Concentration of dissolved substances in solution is higher than concentration of dissolved substances inside cell.
- There is more water inside cell than outside.
- Cells in hypertonic solutions experience osmosis in which water moves through membrane to outside of cell.
- Ex:
 - □ In plant cells, membrane and cytoplasm shrink away from cell wall and plant wilts.
 - □ In animal cells, the pressure decreases and the cells shrivel.

м

Hypotonic Solutions (Hippo)

- Concentration of dissolved substances in solution is lower than concentration of dissolved substances inside the cell.
- There is more water outside the cell than inside.
- Cells in hypotonic solutions experience osmosis in which water moves through membrane into cell.
- EX:
 - □ In animal cells, the pressure inside cell increases causing the cells to swell and sometimes burst!
 - In plant cells, the rigid cell wall prevents bursting, but the cells become more firm.

- There are three types of solutions.
 - isotonic
 - hypertonic
 - Hypotonic

A solution is isotonic to a cell if it has the same concentration of solutes as the cell. Equal amounts of water enter and exit the cell, so its size stays constant.

A hypertonic solution has more solutes than a cell. Overall, more water exits a cell in hypertonic solution, causing the cell to shrivel or even die.

A hypotonic solution has fewer solutes than a cell. Overall, more water enters a cell in hypotonic solution, causing the cell to expand or even burst.

Passive Transport: Mosey on through...

- Molecules pass through the cell membrane requiring <u>no energy</u> input from the cell.
- The molecules just mosey on through!

Facilitated Diffusion

- The passive transport of specific molecules across cell membranes through protein channels is known as **facilitated diffusion**.
 - Essentially, the molecules are being helped across the membrane!
- If facilitated diffusion is considered Passive Transport, is there any energy used?

Facilitated Diffusion

- Although facilitated diffusion is fast and specific, it is still diffusion.
- Therefore, facilitated diffusion will only occur if there is a higher concentration of the particular molecules on one side of a cell membrane as compared to the other side.

M

Active Transport

Sometimes cells move materials in the opposite direction from which the materials would normally move—that is against a concentration difference. (from low to high concentrations)

This process is known as active transport.

□Active transport requires energy!

Active Transport

- Molecular Transport
 - In active transport, small molecules and ions are carried across membranes by proteins in the membrane.

□ These Proteins need ENERGY

Active Transport Molecule to be carried

Cellular Transport

What about the big boys?

ENDOCYTOSIS: cells surrounds and takes in material from environment by engulfing the material! YUMMY!

- EXOCYTOSIS: cells expel materials from cell, such as waste or indigestible particles. GROSS!
- Both endo and exocytosis are moving large masses of material and require energy (ACTIVE TRANSPORT!)

Endocytosis

Phagocytosis: Psuedo arms take in food particles

Pinocytosis: NO psuedo arms are made as the cell takes in fluid.

Phagocytosis

Phagocytosis

Endocytosis and Exocytosis

ENDOCYTOSIS

- Unlike a cell wall, a cell membrane
- is composed of a lipid bilayer.
 - provides rigid support for the surrounding cell.
 - allows most small molecules and ions to pass through easily.
 - is found only in plants, fungi, algae, and many prokaryotes.

- The concentration of a solution is defined as the
 - volume of solute in a given mass of solution.
 - mass of solute in a given volume of solution.
 - mass of solution in a given volume of solute.
 - volume of solution in a given mass of solute.

- If a substance is more highly concentrated outside the cell than inside the cell and the substance can move through the cell membrane, the substance will
 - move by diffusion from inside the cell to outside.
 - remain in high concentration outside the cell.
- A
- move by diffusion from outside to inside the cell.
- cause water to enter the cell by osmosis.

- The movement of materials in a cell against a concentration difference is called
 - facilitated diffusion.
- A active transport.
 - osmosis.
 - diffusion.

- ☐ The process by which molecules diffuse across a membrane through protein channels is called
 - active transport.
 - endocytosis.
- facilitated diffusion.
 - osmosis.

END OF SECTION