Basic Forces and Statics Extra Practice:
\qquad key

1. A 10 kg wind chime is supported by three cables as shown in the figure below. Find the tension in each cable.

$$
\begin{aligned}
& \frac{x}{T_{n e t}}=T_{2 x} \\
& 0=T_{2} \cos 20-T_{1} \cos 48 \\
& T_{2} \cos 20=T_{1} \cos 48 \\
& T_{2}=T_{1} \frac{\cos 48}{\cos 20} \\
& T_{2}=0.712 T_{1} \\
& T_{1}=70.72 \mathrm{~N}
\end{aligned}
$$

$$
\begin{gathered}
\frac{y}{F_{n+1}=T_{24}+T_{1}-T_{3}} \\
0=T_{2} \sin 20+T_{1} \sin 48-98 N \\
98 N=\left(T_{0} 12 T_{1}\right) \sin 20+T_{1} \sin 48 \\
98 N=.2435 T_{1}+.7431 T_{1} \\
98 N=.98668 T_{1} \\
T_{1}=99.32 \mathrm{~N}
\end{gathered}
$$

2. A crane is attempting to remove a 60 kg sign from a building. If it is pulling on the sign as shown below, determine the tension in all of the ropes.

$$
\begin{gathered}
\underline{x} \\
F_{\text {net }}=T_{2}-T_{1 x} \\
O=T_{2}-T_{1} \cos 32 \\
O=T_{2}-(1109.6) \cos 32 \\
T_{2}=940,996 \mathrm{~N}
\end{gathered}
$$

$$
\begin{gathered}
\frac{y}{F_{1} y}-F_{-g} \\
O=T_{1} \sin 32-588 \mathrm{~N}
\end{gathered}
$$

$$
588 N=T \cdot \sin 32
$$

$$
T_{1}=1109.6 \mathrm{~N}
$$

$$
\begin{aligned}
& F g=m\left(a .8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& \mathrm{Fa}=(60 \mathrm{~kg})(9.8 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& F g=m\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& F g=(60 \mathrm{~kg})=5.88 \mathrm{~N} .
\end{aligned}
$$

$F g=588 \mathrm{~N}$
3. Ethan, Alex, Kaitlyn and Val are playing tug of war with a flag that has a mass of 4 kg . Ethan pulls to the North, Alex pulls to the South, Kaitlin pulls to the East and Val pulls to the West. Determine ${ }^{2}$ the net force on the flag, the direction and its acceleration.

$$
\begin{aligned}
& \mathrm{F}_{\text {Ethan }}=75 \mathrm{~N} \\
& \mathrm{~F}_{\text {Alex }}=60.5 \mathrm{~N} \\
& \mathrm{~F}_{\text {Kaitlin }}=40.2 \mathrm{~N} \\
& \mathrm{~F}_{\text {Val }}=5.7 \mathrm{~N} .
\end{aligned}
$$

$$
\underline{\underline{x}}
$$

$$
y
$$

$$
F_{\text {ret }}=F_{k}-F_{v}
$$

$$
F_{\text {net }} y=F_{E}-F_{A}
$$

$$
F_{\text {nets }}=40.2 \mathrm{~N}-5.7 \mathrm{~N} \quad F_{\text {net }}=75 \mathrm{~N}-60.5 \mathrm{~N}
$$

$$
\begin{aligned}
& \text { net }
\end{aligned}=35.4 \mathrm{~N} \quad F_{\text {net }}=14.5 \mathrm{~N}
$$

$$
\begin{aligned}
& \text { Fret }-72 \\
& -35.4 \mathrm{~N} \\
& \text { is } 6000 \mathrm{~kg} . \mathrm{Wh} \\
& \text { the acceleration } \\
& M 00 \mathrm{n} \\
& 6000 \mathrm{~kg}
\end{aligned}
$$

4. An African elephant can reach heights of 13 feet is 6000 kg . What is its mass and weight on Earth? What is its mass and weight on the moon where the acceleration due to gravity is only $1.63 \mathrm{~m} / \mathrm{s} / \mathrm{s}$?

$$
\begin{aligned}
& \text { Earth } \\
& \begin{array}{l}
m=6000 \mathrm{~kg} \\
F g=\text { weight } \\
F g=m\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right. \\
F g=(6000 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
F g=58800 \mathrm{~N}
\end{array}
\end{aligned}
$$

Some Problems from physicsclassroom.com Calculator Pad - If you don't know how to do the problem click on this in the physicsclassroom website - go to the Newtons Law problem set and listen to the audio guide.

Problem 7
Sophia, whose mass is 52 kg , experienced a net force of 1800 N at the bottom of a roller coaster loop during her school's physics field trip to the local amusement park. Determine Sophia's acceleration at this location. Also determine the $F_{\text {normal }}$ acting on her at this point in time.

Problem 10

$$
\begin{array}{ll}
F_{\text {net }}=\text { manet } & F_{\text {net }}=F_{N}-F_{g} \\
1800 \mathrm{~N}=(52 \mathrm{~kg}) a_{\text {net }} & 1800 \mathrm{~N}=F_{N}-509.6 \mathrm{~N} \\
a_{\text {net }}=34.6 \mathrm{~m} / \mathrm{s}^{2} & F_{N}=1290.4 \mathrm{~N}
\end{array}
$$

$$
\begin{aligned}
& F_{j}=m(9.8 \mathrm{~m} / \mathrm{s} \\
& F g=(52 \mathrm{~kg})(9.8) \\
& \mathrm{Fg}=509.6 \mathrm{~N}
\end{aligned}
$$

Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They determine that a net force of \mathbf{F} causes a cart with a mass of \mathbf{M} to accelerate at $48 \mathrm{~cm} / \mathrm{s} / \mathrm{s}$. What is the acceleration value of a cart with ...
a. a mass of \mathbf{M} when acted upon by a net force of $2 F$? $\frac{2 F}{m} \Rightarrow 2\left(48 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}\right)=96 \frac{\mathrm{~cm}}{\mathrm{~s} 2} \quad \frac{F}{\mathrm{~m}}=\frac{48 \mathrm{~cm}}{\mathrm{~s}^{2}}$
b. a mass of $\mathbf{2 M}$ when acted upon by a net force of F ?
c. a mass of $\mathbf{2 M}$ when acted upon by a net force of $\mathbf{2 F}$?
d. a mass of $\mathbf{4 M}$ when acted upon by a net force of $\mathbf{2 F}$?
e. a mass of $\mathbf{2 M}$ when acted upon by a net force of $\mathbf{4 F}$?

$$
\begin{aligned}
& \frac{F}{m}=48 \frac{\mathrm{~cm}}{S^{2}} \\
& =24 \mathrm{~cm} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } \frac{2 F}{2 M} \Rightarrow \frac{2}{2}\left(\frac{F}{M}\right) \Rightarrow \frac{2}{2}\left(48 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}\right)=48 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}} \quad \text { e. } \frac{4 F}{2 M} \Rightarrow \frac{4}{2}\left(\frac{F}{M}\right) \Rightarrow 2\left(48 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}\right) \\
& \text { d. } \frac{2 F}{4 M} \Rightarrow \frac{1}{2}\left(\frac{F}{M}\right) \Rightarrow \frac{1}{2}\left(48 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}\right)=24 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}
\end{aligned}
$$

$$
a=\frac{F}{m}
$$

$$
\text { b. } \frac{F}{2 m} \Rightarrow \frac{1}{2}\left(\frac{F}{m}\right) \Rightarrow \frac{1}{2}\left(48 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}\right)=24 \mathrm{~cm} / \mathrm{s}^{2}
$$

Mira and Tariq are lab partners for the Pulley and Bricks Lab. They have determined that the $2.15-\mathrm{kg}$ brick is experiencing a forward tension force of 9.54 N and a friction force of 8.69 N as it is accelerated across the table top. Construct a free body diagram depicting the types of forces acting upon the brick. Then determine the net force and acceleration of the brick.

Problem 29

$$
\begin{aligned}
& \text { acceleration Direction of acceleration } \\
& F_{\text {net }}=T-F_{f} \\
& \text { manet }=9.54 \mathrm{~N}-8.69 \mathrm{~N} \\
& (2.15 \mathrm{~kg}) a_{\text {net }}=.85 \mathrm{~N} \quad a_{\text {net }} \\
& a_{\text {net }}=.395 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
F_{\text {net }}=.85 \mathrm{~N}
$$

While skydiving, Dee Selenate opens her parachute and her $53.4-\mathrm{kg}$ body immediately accelerates upward for an instant at $8.66 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. Determine the upward force experienced by Dee during this instant.

$$
\begin{gathered}
F_{\text {nut }}=F_{A}-F_{g} \\
\text { manet }_{\text {net }}=F_{A}-F_{g} \\
(53.4 \mathrm{~kg})\left(8.66 \mathrm{~m} / \mathrm{s}^{2}\right)=F_{A}-532.32 \mathrm{~N} \\
F_{A}=985.76 \mathrm{~N}
\end{gathered}
$$

