How to Solve Static Tension Problems

Without Knowing the Tensions!

Find the Tension in the Strings

First look at the Object and T_3

• Free Body Diagram of the Box

First look at the Object and T_3

• Set up the Fnet Equation

First look at the Object and T₃

• Fnet= T_3 - F_g

First look at the Object and T_3

- Fnet= T_3 - F_g
- Since the Box is not moving a_{net}=0

Therefore Fnet=0 T₃ $0=T_3-F_g$ T₃=F_g T₃=m(9.8m/s/s) T₃=10kg(9.8m/s/s) T₃=98N

Back to the original problem: Find the Tension in the Strings

Draw a Free Body Diagram

Find the x and y components of each

Set up the Fnet in x

 $F_{x net} = T_2 \cos 70 - T_1 \cos 60$

Set up the Fnet in y

 $F_{y net} = T_2 \sin 70 + T_1 \sin 60 - T_3$

- Now you have two equations and two unknowns.
- $0=T_2\cos 70-T_1\cos 60$
- $0=T_2\sin70+T_1\sin60-98N$

Math Fun Continued

- Solve for T₁ in terms of T₂ in one equation
- $0=T_2\cos 70-T_1\cos 60$
- $T_2 \cos 70 = T_1 \cos 60$
- $T_2 \cos 70 / \cos 60 = T_1$
- Now you will plug that into the other equation

- $0=T_2\sin70+T_1\sin60-98N$
- $T_2 \cos 70 / \cos 60 = T_1$

- Put together this means:
- $0=T_2\sin70+[T_2\cos70/\cos60]\sin60-98N$

• Now solve for T₂

- $0=T_2\sin70+[T_2\cos70/\cos60]\sin60-98N$
- $0=T_2(.939)+[T_2(.684)]sin60-98N$
- 0=T₂(.939)+[T₂(.593)]-98N
- $98N = T_2(.939 + .593)$
- $98N = T_2(1.532)$
- $98N/1.532 = T_2$
- $63.96N = T_2$

- To solve for T₁ go back to the other equation
- $T_2 \cos 70 / \cos 60 = T_1$
- $T_2 \cos 70 / \cos 60 = T_1$
- $T_2(.684)=T_1$
- We just found that 63.96N = T₂ Therefore:
- 63.96N(.684)= T₁
- 43.75N = T₁

AND DONE!

 On Wednesday we looked at a problem where you knew the tension of one of the strings to see the set up. This problem shows that you do not need that information in order to solve. Simply set up a system of equations and go from there!