Physics 432

$$
V_{\text {sound }}=345 \mathrm{~m} / \mathrm{s}
$$

Date \qquad
Interference and Resonance
Review WS

Directions: Show all your work, include proper units, and box your final answer.

1. Draw the first three resonant patterns and indicate the corresponding frequencies of a closed pipe that is . 6 m long.

third
2. The second harmonic of an open organ pipe is $2,400 \mathrm{~Hz}$. What would the harmonic be in the same pipe if one end were closed? (Include a drawing of each)

$$
\begin{gathered}
\lambda=L \\
f=\frac{V}{L} \\
2400 \mathrm{~Hz}=\frac{345 \mathrm{~m} / \mathrm{s}}{2} \\
L=.14375 \mathrm{~m}
\end{gathered}
$$

$$
\begin{array}{r}
\frac{3}{4} \lambda=L \\
\lambda=\frac{4}{3} L
\end{array}
$$

$$
f=\frac{3 v}{4 L}
$$

$$
f=\frac{3(345 \mathrm{~m} / \mathrm{s})}{4(.14375 \mathrm{~m})}
$$

$$
f=1800 \mathrm{H}_{2}
$$

3. What is the fundamental frequency of a closed organ pipe 35 cm long when the temperature is 18 degersits? $V_{\text {sound }}=343 \mathrm{~m} / \mathrm{s}$

$$
\begin{array}{rl}
L=.35 & f \\
\frac{1}{4} \lambda=L \quad & =\frac{v}{4 L} \\
f & =\frac{345 \mathrm{~m} / \mathrm{s}}{4(.35 \mathrm{~m})} \\
f & =246.43 \mathrm{~Hz}
\end{array}
$$

4. A lost boy yells for help in a cave that is 700 meters long. He hears his echo 4.25 s later. a. Calculate the speed of sound in air.

$$
\begin{aligned}
& v=\frac{d}{t} \\
& v=3294 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b. If the wavelength of sound is 0.75 m then what is the frequency?

$$
\begin{aligned}
& v=f \lambda \\
& 329.4 \mathrm{~m} / \mathrm{s}=f(.75 \mathrm{~m}) \\
& f=439.2 \mathrm{~Hz}
\end{aligned}
$$

