Vector Practice

1. For this set of lines draw the resultant vectors. $\quad=$ redrawn vector

2. For the following vectors draw in the x and y components and solve for each component. Also describe the direction of the angle. ' M ' signifies magnitude.

x component: $47.28 \mathrm{~N} \rightarrow$
x component: $2.19 \mathrm{~m} / \mathrm{s} \rightarrow$ x component: $-22.28 m \leftarrow$
y component: $36.94 \mathrm{~N} \downarrow$ y component: $13.83 \mathrm{~m} / \mathrm{s} \uparrow$ y component: $11.35 \mathrm{~m} \downarrow$

Direction of Resultant Angle:
81° North of East
38° South of East 9° East of North
27° south of west 52° East of South
3. Find the magnitude and direction of net force for each of the diagrams below. Hints: Redraw the vectors to see how they add together and draw the resultant below the diagram.

$6 N$

ON

$$
\frac{5.66 \mathrm{~N} @ 45^{\circ} \mathrm{NofW}}{45^{\circ} \mathrm{WofN}}
$$

4. A ball is thrown at a 50° angle East of North. The initial speed of the ball is $12 \mathrm{~m} / \mathrm{s}$. Use the diagram below to first draw in the initial vector. Then find how fast it is going in the x-direction and how fast it is going in the y-direction.

$$
\begin{aligned}
& x=9.19 \mathrm{~m} / \mathrm{s} \\
& y=7.71 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

5. A person now throws the ball the same way so that it is moving at $12 \mathrm{~m} / \mathrm{s}$ at an angle of 50° East of North. However just as the ball is released a gust of wind blows so hard that it will push the ball $5 \mathrm{~m} / \mathrm{s}$ directly East. Draw these vectors with the resultant.

a. What are the x and y components of the two vectors?

$$
\begin{array}{lll}
v_{1} & 9.19 & 5 \\
v_{2} & 5.71
\end{array}
$$

b. Draw the new resultant vector.
see above
c. What are the x and y components of this new resultant vector?

$$
x=14.19 \quad y=7.7,1
$$

d. What is the magnitude and direction of the resultant vector?

Insert....between 5 and 6 ()
8. What is the resultant displacement vector when someone travels directly north for 4 m and then travels directly west for 3 m ?

$$
3^{2}+4^{2}=r^{2}
$$

$4 m$

$$
r=5 \mathrm{~m} @ 36.87^{\circ} \mathrm{NofN}
$$

9. What is the resultant velocity if the x component is $6.2 \mathrm{~m} / \mathrm{s}$ west and $8.3 \mathrm{~m} / \mathrm{s}$ south ?

10. What is the total (resultant velocity) when a stream is flowing at $7.54 \mathrm{~m} / \mathrm{s}$ east and a boat can travel directly north at a velocity of $4.47 \mathrm{~m} / \mathrm{s}$? If the river is 12 m wide, how far upstream does the boat hit the shore?

$$
\begin{aligned}
\tan \theta & =\frac{4.47}{7.54} \\
\theta & =\tan ^{-1}\left(\frac{4.47}{7.54}\right) \quad \theta=30.66
\end{aligned}
$$

